

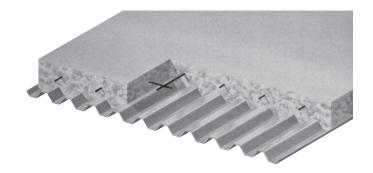
0.6 C, CSV CONFORM

MAXIMUM CONSTRUCTION CLEAR SPANS (S.D.I. CRITERIA)

Total Slab		WEIGHT		NW CONCRETE N=9 145 PCF		WEIGHT	LW CONCRETE N=14 110 PCF				
Depth	DECK	PSF	1 SPAN	2 SPAN	3 SPAN	PSF	1 CDAN	1 SPAN 2 SPAN			
Бериі	0.6C28	23	2- 3	2- 10	2- 11	17	2-4	2- 11	3 SPAN 3- 0		
2		23	2- 3	3-5	3-5	18	2-4	3-6	3- 0 3- 7		
	0.6C26	23	3-4	4-3	3- 5 4- 4	18	3-6	4-6			
(t=1.50)	0.6C24	23	3- 4 3- 10			18			4- 6		
	0.6C22			5- 0	5- 1		4-1	5- 3	5- 4		
0.5	0.6C28	29	2- 2	2-9	2-9	22	2-3	2- 10	2- 11		
2.5	0.6C26	29	2- 6	3-3	3- 4	22	2-8	3- 5	3- 6		
(t=2.00)	0.6C24	29	3- 2	4-1	4-2	22	3-4	4-4	4- 4		
	0.6C22	29	3- 8	4-9	4- 10	23	3- 11	5- 1	5- 1		
	0.6C28	35	2- 1	2-8	2-8	27	2- 2	2- 9	2- 10		
3	0.6C26	35	2- 5	3- 2	3- 2	27	2- 7	3- 4	3- 4		
(t=2.50)	0.6C24	35	3- 0	3- 11	3- 11	27	3- 2	4- 2	4- 2		
	0.6C22	36	3- 6	4-7	4- 7	27	3- 9	4- 10	4- 11		
	0.6C28	41	2- 0	2-7	2- 7	31	2- 1	2-9	2-9		
3.5	0.6C26	41	2- 4	3- 0	3- 1	31	2-6	3- 3	3- 3		
(t=3.00)	0.6C24	41	2- 10	3-9	3- 10	32	3- 1	4- 0	4- 1		
	0.6C22	42	3- 4	4- 5	4- 5	32	3- 7	4-8	4- 9		
	0.6C28	47	1- 11	2-6	2-6	36	2- 1	2-8	2- 8		
4	0.6C26	47	2- 3	2- 11	3- 0	36	2- 5	3- 1	3- 2		
(t=3.50)	0.6C24	47	2- 9	3-8	3-8	36	3- 0	3- 11	3- 11		
, ,	0.6C22	48	3- 2	4-3	4- 3	36	3- 5	4-6	4- 7		
	0.6C28	53	1- 10	2-5	2-6	40	2-0	2- 7	2- 7		
4.5	0.6C26	53	2- 2	2- 10	2- 11	40	2-4	3- 1	3- 1		
(t=4.00)	0.6C24	53	2- 8	3-6	3- 7	41	2- 11	3-9	3- 10		
	0.6C22	54	3- 1	4- 1	4- 1	41	3- 4	4- 5	4- 5		
	0.6C28	59	1- 10	2-5	2- 5	45	1- 11	2-6	2- 7		
5	0.6C26	59	2- 1	2-9	2- 10	45	2-3	3- 0	3- 0		
(t=4.50)	0.6C24	59	2- 7	3- 5	3-6	45	2- 10	3-8	3- 9		
	0.6C22	60	3- 0	3- 11	4- 0	46	3- 3	4- 3	4- 4		

REINFORCED CONCRETE SLAB ALLOWABLE LOADS

			Superimposed Uniform Load (psf) 3 Span Condition										
Slab	REINFORCEMENT						Cle	ar Span (ft	in.)				
Depth	W.W.F.	As	2-0	2-3	2- 6	2- 9	3- 0	3-3	3-6	3-9	4- 0	4- 6	5- 0
	6X6-W1.4XW1.4	0.028*	194	153	124	103	86	74	63				
2	6X6-W2.1XW2.1	0.042	285	225	183	151	127	108	93				
(t=1.50)	6X6-W2.9XW2.9	0.058	384	304	246	203	171	146	125				
	6X6-W1.4XW1.4	0.028*	268	212	172	142	119	102	88	76	67	53	
2.5	6X6-W2.1XW2.1	0.042	396	313	254	210	176	150	129	113	99	78	
(t=2.00)	6X6-W2.9XW2.9	0.058	400	400	344	284	239	204	176	153	134	106	
	6X6-W1.4XW1.4	0.028*	342	271	219	181	152	130	112	97	86		
3	6X6-W2.1XW2.1	0.042*	400	400	325	268	226	192	166	144	127		
(t=2.50)	6X6-W2.9XW2.9	0.058	400	400	400	366	307	262	226	197	173		
	6X6-W2.1XW2.1	0.042*	400	400	396	327	275	234	202	176	155		
3.5	6X6-W2.9XW2.9	0.058*	400	400	400	400	375	320	276	240	211		
(t=3.00)	4X4-W2.9XW2.9	0.087	400	400	400	400	400	400	400	353	310		
	6X6-W2.1XW2.1	0.042*	400	400	400	384	322	275	237	206	181		
4	6X6-W2.9XW2.9	0.058*	400	400	400	400	400	372	321	280	246		
(t=3.50)	4X4-W2.9XW2.9	0.087	400	400	400	400	400	400	400	400	358		
	6X6-W2.9XW2.9	0.058*	400	400	400	400	400	400	359	313	275		
4.5	4X4-W2.9XW2.9	0.087	400	400	400	400	400	400	400	400	400		
(t=4.00)	4X4-W4.0XW4.0	0.120	400	400	400	400	400	400	400	400	400		
	6X6-W2.9XW2.9	0.058*	400	400	400	400	400	400	396	345	303		
5	4X4-W2.9XW2.9	0.087*	400	400	400	400	400	400	400	400	400		
(t=4.50)	4X4-W4.0XW4.0	0.120	400	400	400	400	400	400	400	400	400		


- NOTES: 1. * As does not meet A.C.I. criterion for temperature and shrinkage.
 - 2. Recommended conform types are based upon S.D.I. criteria and normal weight concrete.
 - 3. Superimposed loads are based upon three span conditions and A.C.I. moment coefficients.
 - 4. Load values for single span and double spans are to be reduced.
 - 5. Vulcraft's painted or galvanized form deck can be considered as permanent support in most building applications. See page 23. If uncoated form deck is used, deduct the weight of the slab from the allowable superimposed uniform loads.

VULCRAFT

SLAB INFORMATION

Total Slab	Theo Conc	rete Volume	Recommended			
Depth, in.	Yd ³ / 100 ft ²	ft ³ / ft ²	Welded Wire Fabric			
2	0.52	0.142	6x6 - W1.4xW1.4			
2 1/2	0.68	0.183	6x6 - W1.4xW1.4			
3	0.83	0.225	6x6 - W1.4xW1.4			
3 1/4	0.91	0.246	6x6 - W1.4xW1.4			
3 1/2	0.99	0.267	6x6 - W2.1xW2.1			
4	1.14	0.308	6x6 - W2.1xW2.1			
4 1/4	1.22	0.329	6x6 - W2.1xW2.1			
4 1/2	1.30	0.350	6x6 - W2.1xW2.1			

SECTION PROPERTIES

Deck	Design	Deck		Section F				
Type	Thickness Weight		I _p	I _n	S_p	S _n	V_a	F _y
	in.	psf	in ⁴ /ft	in ⁴ /ft	in ³ /ft	in ³ /ft	lbs/ft	ksi
0.6C28	0.0149	0.76	0.012	0.012	0.035	0.036	2029	60
0.6C26	0.0179	0.91	0.015	0.015	0.043	0.043	2928	60
0.6C24	0.0239	1.21	0.019	0.019	0.057	0.057	4064	60
0.6C22	0.0295	1.49	0.024	0.024	0.070	0.070	5048	60

ALLOWABLE UNIFORM LOAD (PSF)

TYPE	NO. OF	DESIGN		CLEAR SPAN (ft-in)											
NO.	SPANS	CRITERIA	2-0	2-3	2- 6	2- 9	3- 0	3- 3	3-6	3-9	4- 0	4- 6	5- 0	5-6	6-0
		Fb = 36,000	210	166	134	111	93	79	68	60	52	41	34	28	23
	1	Defl. = I/240	98	69	50	38	29	23	18	15	12	9	6	5	4
		Defl. = I/180	131	92	67	51	39	31	25	20	16	12	8	6	5
		Fb = 36,000	214	169	137	113	95	81	70	61	54	43	34	28	24
0.6C28	2	Defl. = I/240	237	167	121	91	70	55	44	36	30	21	15	11	9
		Defl. = I/180	316	222	162	122	94	74	59	48	40	28	20	15	12
		Fb = 36,000	266	211	171	142	119	102	88	76	67	53	43	36	30
	3	Defl. = I/240	186	130	95	71	55	43	35	28	23	16	12	9	7
		Defl. = I/180	247	174	127	95	73	58	46	38	31	22	16	12	9
		Fb = 36,000	257	203	165	136	114	98	84	73	64	51	41	34	29
	1	Defl. = I/240	123	86	63	47	36	29	23	19	15	11	8	6	5
		Defl. = I/180	164	115	84	63	49	38	31	25	21	14	11	8	6
		Fb = 36,000	256	202	164	136	114	97	84	73	64	51	41	34	29
0.6C26	2	Defl. = I/240	296	208	152	114	88	69	55	45	37	26	19	14	11
		Defl. = I/180	395	278	202	152	117	92	74	60	49	35	25	19	15
	3	Fb = 36,000	319	253	205	169	142	121	105	91	80	63	51	43	36
		Defl. = I/240	232	163	119	89	69	54	43	35	29	20	15	11	9
		Defl. = I/180	309	217	158	119	92	72	58	47	39	27	20	15	11
	1	Fb = 36,000	341	270	218	181	152	129	111	97	85	67	55	45	38
		Defl. = I/240	156	110	80	60	46	36	29	24	19	14	10	7	6
		Defl. = I/180	208	146	106	80	62	48	39	32	26	18	13	10	8
		Fb = 36,000	339	269	218	180	151	129	111	97	85	67	55	45	38
0.6C24	2	Defl. = I/240	375	264	192	144	111	87	70	57	47	33	24	18	14
		Defl. = I/180	501	352	256	193	148	117	93	76	63	44	32	24	19
		Fb = 36,000	423	335	272	225	189	161	139	121	106	84	68	56	47
	3	Defl. = I/240	294	206	150	113	87	68	55	45	37	26	19	14	11
		Defl. = I/180	392	275	201	151	116	91	73	59	49	34	25	19	15
		Fb = 36,000	419	331	268	222	186	159	137	119	105	83	67	55	47
	1	Defl. = I/240	197	138	101	76	58	46	37	30	25	17	13	9	7
		Defl. = I/180	263	184	134	101	78	61	49	40	33	23	17	13	10
		Fb = 36,000	417	330	267	221	186	158	137	119	105	83	67	55	47
0.6C22	2	Defl. = I/240	474	333	243	182	141	111	88	72	59	42	30	23	18
		Defl. = I/180	632	444	324	243	187	147	118	96	79	56	40	30	23
		Fb = 36,000	520	411	334	276	232	198	171	149	131	103	84	69	58
	3	Defl. = I/240	371	261	190	143	110	86	69	56	46	33	24	18	14
		Defl. = I/180	495	348	253	190	147	115	92	75	62	43	32	24	18

